Wanyun Shao, Ph.D
  • Home
  • News
  • Bio
  • Research
  • Publications
  • Public Writing
  • Blog
  • Teaching
  • Contact
  • Links
  • Home
  • News
  • Bio
  • Research
  • Publications
  • Public Writing
  • Blog
  • Teaching
  • Contact
  • Links
Search by typing & pressing enter

YOUR CART

8/31/2022 2 Comments

Our new paper on the socio-geographic patterns of rescue requests during Hurricane Harvey has been published in Findings

   Our paper on the socio-geographic patterns of rescue requests during Hurricane Harvey has been published in Findings. Below is the abstract:

"We analyze a public dataset of rescue requests for the Houston Metropolitan Area during Hurricane Harvey (2017) from the Red Cross. This dataset contains information including the location, gender, and emergency description in each requester’s report. We reveal the spatial distribution of the rescue requests and its relationship with indicators of the social, physical, and built environment. We show that the rescue request rates are significantly higher in regions with higher percentages of children, male population, population in poverty, or people with limited English, in addition to regions with higher inundation rate or worse traffic condition during Hurricane Harvey. The rescue request rate is found to be statistically uncorrelated with the percentage of flood hazard zone designated by the Federal Emergency Management Agency (FEMA)."

Picture
Figure 1.Spatial Distribution of Event-related Variables in Each Zip Code. a). Percentage of people who sought rescues during Harvey, b). Traffic index during Harvey, c). Inundation index during Harvey.
2 Comments

8/2/2022 0 Comments

Open PhD Position – coastal community resilience, risk perceptions, community engagement, Nature Based Solution

     The Environmental Decision Making Lab at the Department of Geography of the University of Alabama seeks a geography PhD student to focus on coastal community resilience, risk perceptions, community engagement under the theme of Nature Based Solution (NBS). The broader research team is focused on developing actionable design guidance for NBS (i.e., wetland restoration) along the US Gulf Coast. Our highly interdisciplinary group includes social scientists, wetland ecologists, water resource engineers, and government agency partners. Our goal is to develop guidance for wetland restoration activities optimized to reduce flooding and increase coastal community resilience. To accomplish this goal, we will employ a combination of community engagement, wetland plant community characterization, and state-of-the-art hydrologic and hydraulic modeling.
​
     The successful candidate will be expected to start in spring, 2023. The candidate will work closely with social scientists, wetland ecologists, and water resource engineers, and our government partners to develop, assess, and communicate NBS design alternatives by engaging stakeholders in a knowledge co-production fashion. The candidate will be expected to work with the team to develop a plan for stakeholder engagement meetings, organize and facilitate stakeholder engagement activities, collect the data from the meetings, analyze the data, and report findings in peer-reviewed manuscripts. Through this work, the candidate will also be expected to develop hypothesis driven research based on their interests.
The ideal candidate will have MS degrees in a relevant field (i.e., geography, urban and regional planning, environmental sociology, ecology, environmental science, or closely related field). The candidate should be excited about working on an interdisciplinary team; interacting with community partners, and conducting both basic and applied research. Further, experience with statistical analysis and programs (e.g., R, Stata, SPSS) and geographic information systems (e.g., ArcGIS, QGIS) are required. Experience with textual analysis programs (e.g., NVivo) is preferred but not required. Additionally, experience with scripting languages (e.g., R, Python, or Matlab) are preferred but not required.
 
For more information, please contact Dr. Wanyun Shao (wshao1@ua.edu)
0 Comments

3/31/2022 0 Comments

Our new paper has been published in the International Journal of Disaster Risk Reduction

     Our paper has been published in the International Journal of Disaster Risk Reduction (Impact factor: 4.32). Below please find the abstract:

"Climate change has posed serious risks to coastal cities around the world. Effective urban disaster management calls for the coordination between the local government and residents. We propose a comprehensive framework to study urban disaster resilience under climate change with New Orleans of Louisiana in the U.S. as the study area. Municipal hazard mitigation must be sufficient to mitigate these hazards. Residents’ risk perceptions are a vital component of social vulnerability and can shape public decisions to increase disaster resiliency. Because climate change is expected to intensify, it becomes important to ensure that residents’ risk perceptions are considered when developing municipal plans to maximize regional resiliency. This research aims to identify a gap in the hazard mitigation process that can be closed to better prepare the community to manage coastal hazards. To achieve this, an online survey is distributed in the New Orleans metropolitan area to determine residents’ risk perceptions and expectations of the local government’s action. Policy analysis is conducted to identify the priorities held by municipal planners in these issues. Although there is no gap in the perception of risk and municipal mitigation of current coastal hazards, there is a gap between the municipal approach to climate change mitigation and the concern and expectation of actions the residents hold regarding the future effects of climate change. The approach to climate change should be reconsidered on a municipal level and new small-scale personal incentives should be promoted to maximize resiliency toward coastal hazards in the future." 
Picture
Fig. 2 Framework of Convergent Research on Urban Disaster Resilience
0 Comments

3/31/2022 0 Comments

Our paper has been recognized as the most cited paper in Disasters

    Our paper on community vulnerability to floods and hurricanes in the Gulf Coast  has been recognized as the most cited paper in the journal Disasters.​
​

Picture
0 Comments

11/26/2021 0 Comments

Our new paper in Sustainable Cities and Society

    Our new paper is published online in Sustainable Cities and Society (impact factor: 7.587). Below please find the abstract:
    "The use of social media platforms such as Twitter significantly increases during natural hazards. With the emergence of several social media platforms over the past decade, many studies have investigated the applications of these platforms during calamities. This study presents a comprehensive spatiotemporal analysis of textual content from millions of tweets shared on Twitter during Hurricane Harvey (2017) across several affected counties in southeast Texas. We propose a new Hazard Risk Awareness (HRA) Index, which considers multiple factors, including the number of tweets, population, internet use rate, and natural hazard characteristics per geographic location. We then map the HRA Index across southeast Texas. Utilizing a dataset of 18 million tweets, we employ Natural Language Processing (NLP) along with a set of statistical techniques to perform analysis on the textual data generated by Twitter users during Hurricane Harvey. This enables us to subdivide the tweet contents into several categories per county that would inform crisis management during the event. In all, our study provides valuable information at the county level before, during, and after Harvey that could significantly help disaster managers and responders to minimize the consequences of the event and improve the preparedness of the residents for it. Since HRA is derived based on the meteorological observations and some demographic information, depending on the availability of such dataset and the nature of the hazard (i.e., flood, wildfire, hurricane, and earthquake), this index can be calculated and employed for assessing the risk awareness of a community exposed to either of these natural hazards."
Picture
Figure 4. Hazard Risk Awareness index across the counties in southeast Texas affected by hurricane Harvey (Source: Karimiziarani et al. 2022)
Picture
Figure 6. Categorized tweets into humanitarian classes across the counties affected by Hurricane Harvey (Source: Karimiziarani et al. 2022)
0 Comments

10/10/2020 3 Comments

Our new paper on perceptions of sea level rise in Climatic Change


        Our new paper on perceptions of sea level rise has been published in Climatic Change (Impact factor: 4.743). Below please find the abstract:
        "Sea level rise (SLR) in the 21st century poses fundamental risks to coastal residents. The U.S. Gulf of Mexico Coast (Gulf Coast) is among the regions experiencing the most rapid relative SLR. Beyond its increasing exposure to SLR and related coastal flooding, the Gulf Coast is home to a large population and displays high social vulnerability. How the coastal population in this vulnerable region perceives the impending risks posed by SLR warrants further examination. Do coastal residents’ perceptions of SLR conform to the scientific projections? We adopt an integrative approach based on a 2019 survey merged with contextual data including percentage of population living within the Special Flood Hazard Area (SFHA) and social vulnerability at the county level, both of which are extracted from the Centers for Disease Control and Prevention. We find that public risk perceptions of sea level change are influenced by political predisposition, with Republicans being less likely than Democrats to expect SLR in the future. Moreover, SLR remains temporally distant issue among coastal residents. We then directly compare public expectations and scientific estimations of SLR in five states of the U.S. Gulf Coast region and find that coastal residents in states that have experienced faster SLR in the past are more optimistic about future SLR by underestimating its magnitude compared to those experiencing slower SLR. Moreover, we find that people likely conflate the severity with likelihood of SLR risk. The contextual force represented by percentage of population living within the SFHA designated by the Federal Emergency Management Agency (FEMA) can significantly influence individuals’ estimations of future SLR, with higher percentages leading to higher estimates. We suspect that the SFHA has become a powerful risk communication tool that influences coastal residents’ judgments about future risk.
 

​
Picture
Figure 3. Comparison of public estimation with scientific estimation of SLR at five locations in Texas, Louisiana, Mississippi and Alabama, Florida Panhandle, and Florida Peninsula along the U.S. Gulf Coast. Percentages assigned at lower level and upper level in each figures represent percentages of respondents who estimated future SLR to be lower than the 5th and higher than the 95th scientific estimates, respectively (Source: Shao et al. in press).
3 Comments

7/19/2020 1 Comment

Our new paper in Science of the Total Environment


    Our new paper has been published in Science of the Total Environment (Impact Factor: 7.963). Below please find the abstract:

     "Climate extremes will be intensified and become more frequent. One of the regions where this is the case is the U.S. Gulf coast region. This region is susceptible to the impacts of climate extremes. This region has recently experienced large amounts of economic damages caused by high-impact hurricanes and floods. Meanwhile, drought can also pose serious risks once it occurs. By using a 2019 U.S. Gulf Coast survey combined with Standard Precipitation Index, we closely examined retrospective and prospective evaluations of drought and flood among coastal residents. Drawing upon literature on human-environment system, we were interested in how the objective conditions of past drought and flood influenced individual’s perceptions of these hazards and how their retrospective evaluations were correlated with their prospective evaluations of future trends of these hazards. Coastal residents’ retrospective evaluations of past drought and flood were found to be influenced by historic objective conditions. Higher drought frequencies were found to increase the probability of perceiving increasing trend of drought number in the past. Higher flood frequencies were found to decrease the probability of perceiving increasing trend of flood number in the past. Higher intensities of drought and flood were found to increase the probabilities of perceiving increasing trends of drought duration and flood amount in the past. Coastal residents’ prospective evaluations of future drought and flood were found to be influenced by retrospective evaluations of these hazards, suggesting the temporal continuity in human judgement. Moreover, those who relied on a longer time span in reference to the future were found to be more likely to perceive increasing trends of drought and flood. We ended this paper by proposing a theoretical framework to guide future studies and discussing policy implications."​
Picture
Core Figure - Figure 4. Retrospective evaluations of drought and flood risk and association with objective conditions (a) and their correlations with prospective evaluations of drought and flood risk (b). In (a), filled circles, circles with cross, empty circles depict the frequency, duration, intensity, respectively, of drought (red) and flood (blue). In (b) filled (empty) circles depict retrospective evaluations on past drought and flood numbers (past drought duration and past flood amount). The bars represent confidence intervals of all the estimated coefficients (Shao and Kam, 2020)
Picture
Graphic Abstract
Picture
Figure 2. Number of states under regional drought events (red) and regional pluvial flood events (blue) (Shao and Kam, 2020)
Picture
Figure 3: Monthly time series of the relative search activity indices on drought (a) and flood (b) between 2004 through 2018. Dark (light) lines depict the averages (maximum and minimum values) of the relative search activity indices over the five Gulf costal states (Shao and Kam, 2020)
1 Comment

6/28/2019 1 Comment

A new paper in Disasters


      Our new paper was published in Disasters (impact factor: 1.797). Here is the abstract:

      "It is of significance to assess and depict community vulnerability to floods and hurricanes. Over the past several decades, flooding and hurricanes have affected millions of people and caused massive economic losses. Despite efforts to reduce risks, these natural hazards remain to be a considerable challenge to coastal communities. In this paper, Geographic Information Systems (GIS) methods are used to analyze coastal communities’ vulnerability to hurricanes and flooding along the U.S. Gulf coast, which is prone to these two hazards. Specifically, two types of quantitative indicators are developed: exposure to hurricanes and flooding, based on data from multiple sources such as National Climate Data Center and National Flood Insurance Program among others, and a social vulnerability index, constructed on census data at census tract level. These indices are combined to depict the spatial patterns of overall community vulnerability to flooding and hurricane hazards along the U.S. Gulf Coast. Results of this study can potentially inform disaster management agencies, county governments and municipalities of areas with heightened community vulnerabilities. The demonstration of geographic distribution of community vulnerability can assist decision makers in prioritizing to‐do items and designing policies/plans for more effective allocation of resources. We end this paper by discussing the limitations to the present study and the practical implications of the assessment."
​
       The following two figures are from this article (Shao et al. forthcoming).
​
Picture
Picture

1 Comment

4/15/2019 1 Comment

A new paper in Environmental Research Letters


    Our paper on public support for flood mitigation was just published on Environmental Research Letters (impact factor: 6.192). Here is the abstract:

"What is the decision-making mechanism people rely upon to mitigate flood risk? Applying Bayesian Network modelling to a comprehensive survey dataset for the U.S. Gulf Coast, we find that the overall support for flood mitigation can be inferred from flood insurance purchase behavior (i.e., without insurance vs. with insurance purchased mandatorily, voluntarily, or both). Therefore, we propose a theoretical decision-making mechanism composed of two dimensions including informed flood risk and sense of insecurity. The informed flood risk is the primary determinant on one's overall support for flood mitigation. Risk mitigation decisions are largely contingent on the level of risk that is effectively conveyed to individuals. Additionally, sense of insecurity plays a moderate role in determining individuals' overall support for flood mitigation. The sense of insecurity can move people toward overall support for mitigation, but the effect is not as large as the informed risk. Results of this study have fundamental policy implications. The flood risk informed by Federal Emergency Management Agency's flood maps not only provides the compulsory basis for flood insurance purchase but also determines individuals' overall support for flood mitigation. Flood map inaccuracy can immensely mislead individuals' overall risk mitigation decision. Meanwhile, this flood risk mitigation decision-making mechanism inferred from a survey data in the U.S. Gulf Coast needs to be tested and validated elsewhere."

     In this paper, we proposed a flood mitigation decision-making mechanism (please see below). One implication of this study is that "
the importance of risk information in overall flood mitigation decisions. Although the flood premiums do not reflect real risks due to discounts, flood hazard zones have effectively conveyed the risk to homeowners. Risk signals can thus be delivered to homeowners through various means."
Picture
1 Comment

12/21/2018 1 Comment

Our new paper on flood perceptions

        Our new paper on how physical geography influences perceptions of flooding just got published online in the Journal of Hydrology (impact factor: 4.405). Here is the abstract of this paper:

       "How does physical history of flood-related hazards affect individuals’ perceptions? The present study represents a unique effort to understand perceptions of flood hazards in light of the geographic background. Situated in Alabama, the United States, the cities of Mobile and Huntsville display two different physical geographic contexts. Despite one being a coastal city (Mobile) and the other being an inland city, both are similarly vulnerable to flooding. We first present results of historical analyses of heavy precipitation in both cities and analysis of storm surge history in the city of Mobile. We then report results of both descriptive statistical and inferential statistical analyses based on a two-city residents’ survey that was conducted in the spring of 2016. We find that residents in both cities are able to connect the particular natural hazard of flooding with their physical environments. Residents in both cities are influenced by their perceptions of precipitation when making assessments of flooding. Despite the fact that Huntsville has not experienced heavy precipitation events as much as Mobile in recent history, residents of Huntsville tend to link heavy rainfall – the most frequent cause of flooding in that city, with flooding. In contrast, residents of Mobile tend to link hurricanes, more particularly hurricane number, with flooding. These results show that people are attuned to their physical environments and take into consideration their personal observations when forming perceptions of natural hazards. More studies need to be conducted to further investigate the dynamics of physical exposure to hazards and risk perceptions in other geographic areas."

​
1 Comment
<<Previous
    Picture


    Wanyun Shao, Ph.D

    I am a geographer who studies risk decision making within a geographic context.

    Subscribe to Newsletter

    Categories

    All Climate Change Coastal Issues Community Resilience COVID 19 COVID-19 Drought Earthquake Energy Environmental Policy Flooding Geography GIS Hurricanes Natural Disaster Other Paris Accord Public Health Reading Risk Analysis Science Sea Level Rise Weather And Climate

    Archives

    February 2023
    January 2023
    August 2022
    April 2022
    March 2022
    February 2022
    December 2021
    November 2021
    October 2021
    September 2021
    July 2021
    June 2021
    April 2021
    February 2021
    December 2020
    October 2020
    July 2020
    December 2019
    October 2019
    September 2019
    August 2019
    June 2019
    April 2019
    March 2019
    February 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016

    View my profile on LinkedIn

    RSS Feed

Proudly powered by Weebly